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We study asymptotic behavior of the derivatives of Faber polynomials on a set

with corners at the boundary. Our results have applications to the questions of

sharpness of Markov inequalities for such sets. In particular, the found asymptotics

are related to a general Markov-type inequality of Pommerenke and the associated

conjecture of Erd +oos. We also prove a new bound for Faber polynomials on piecewise

smooth domains. # 2002 Elsevier Science (USA)
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1. FABER POLYNOMIALS AND THEIR DERIVATIVES

Let K be a compact connected set. Denote the unbounded connected
component of %CC=K by O: Consider the canonical conformal mapping
C : D ! O; where D :¼ fw : jwj > 1g; with the Laurent expansion at 1

CðwÞ ¼ cw þ c0 þ
c1

w
þ c2

w2
þ 
 
 
 ; jwj > 1; c > 0: ð1:1Þ

We note that c ¼ capðKÞ is the logarithmic capacity of K : The Faber
polynomials fFnðzÞg1n¼0; deg Fn ¼ n; are defined via the Laurent expansion
of the generating function (cf. [21] or [6])

C0ðwÞ
CðwÞ � z

¼
X1
n¼0

FnðzÞ
wnþ1

; z 2 K ; jwj > 1: ð1:2Þ

They proved to be of considerable importance in approximation theory (see,
e.g., [6, 20]), complex function theory [2] and orthogonal polynomials (cf.
[22, 20]).
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An equivalent definition of Faber polynomials can be given by using the
inverse conformal mapping F :¼ C�1: Then FnðzÞ is the polynomial part of
the Laurent expansion of FnðzÞ near z ¼ 1; i.e.,

FnðzÞ ¼ FnðzÞ þ EnðzÞ; z 2 O; ð1:3Þ

where

EnðzÞ ¼ O
1

z

� �
as z ! 1:

If the boundary of O is sufficiently smooth, then it is possible to show that

lim
n!1

EnðzÞ ¼ 0;

for z 2 O; and even for z 2 @O (see [21, Chap. 4; 20]). Thus, we arrive at the
classical asymptotics for Faber polynomials

FnðzÞ ¼ FnðzÞ þ oð1Þ; n ! 1; ð1:4Þ

where z 2 %OO: Note that Faber polynomials typically tend to zero outside %OO;
as n ! 1 (cf. [21, Chap. 4; 7]). Using standard methods, one can prove the
following asymptotics for the derivatives of Faber polynomials.

Proposition 1.1. Suppose that @O is an analytic curve, so that F can be

continued conformally through @O: Then there exist a domain *OO* %OO and

r 2 ð0; 1Þ such that

F ðkÞ
n ðzÞ ¼ dk

dzk
ðFnðzÞÞ þ OðrnÞ as n ! 1; ð1:5Þ

for any z 2 *OO and k ¼ 0; 1; 2; . . . :

These asymptotics may be viewed as the differentiated versions of
Eqs. (1.3) and (1.4). One can obtain a similar result, for the derivatives up to
a certain order, in the case of sufficiently smooth (not analytic) boundary
@O: The ideas are close to those of [21, Chap. 4], but they require a much
more technical argument than the proof of Proposition 1.1.

Asymptotics for Faber polynomials in the case of non-smooth boundary
were obtained in [16]. If @O has the angle of opening ap at z 2 @O; 05a42;
with respect to O; then (1.4) must be replaced by

FnðzÞ ¼ aFnðzÞ þ oð1Þ as n ! 1 ð1:6Þ

(see [16, Theorem 1.1] for the precise statement).
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The primary goal of this note is to find the asymptotics for the derivatives
of Faber polynomials at the corner points of @O: We also consider
applications of such asymptotics to Markov-type inequalities for derivatives
of polynomials on K :

It is not unexpected that our subject is directly related to the geometric
properties of @O via the conformal mapping C: Let z0 2 @O be a point such
that two analytic arcs of @O meet at z0 and form the angle ap; 05a42; as
measured in O: According to the result of Lehman [10], CðwÞ allows an
asymptotic expansion in the neighborhood of w0; where Cðw0Þ ¼ z0;

CðwÞ �Cðw0Þ

¼

P1
k¼0

P1
l¼1 aklðw � w0Þkþla; a is irrational;

P1
k¼0

Pq
l¼1

P½k=p�
m¼0 aklmðw � w0Þkþlp=qðlogðw � w0ÞÞm;

a ¼ p=q is rational:

8>>>><
>>>>:

ð1:7Þ

In both cases, the first term of this expansion is given by

CðwÞ �Cðw0Þ ¼ aaðw � w0Þa þ 
 
 
 ; aaa0 ð1:8Þ

(see [10, Theorem 1; 15, Sect. 3.4] for details). Our main result below gives
the asymptotics for the derivatives of Faber polynomials at an ‘‘analytic
corner.’’

Theorem 1.1. Let @O be rectifiable. Suppose that O has the angle ap; 0
5a42; at its boundary point z0 ¼ Cðo0Þ; which is locally formed by two

analytic arcs of @O: Then

F ðkÞ
n ðz0Þ ¼

ak!nakwn
0

ðaawa
0Þ

kGðak þ 1Þ
þ oðnakÞ as n ! 1; ð1:9Þ

where k ¼ 0; 1; 2; . . . :

Note that the appropriate branch of the multiple valued function wa; 0
5a42; is defined by expansion (1.7)–(1.8), together with the associated
coefficient aa:

If k ¼ 0 then we obtain asymptotics (1.6) for Faber polynomials
themselves (see [16] for a more general result). The case k ¼ 1 gives the
asymptotics for the first derivative of Faber polynomials, which have
applications to Markov-type inequalities for the derivative of polynomials
on general sets. The fact that Faber polynomials can be used to show
sharpness of Markov-type inequalities was already observed in the classical
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paper of Szeg +oo [23]. We develop his ideas and relate our asymptotics to the
result of Pommerenke [12] and the conjectures of Erd +oos [4, 5].

2. MARKOV INEQUALITIES FOR GENERAL SETS

Define the uniform (sup) norm on K by

jj f jjK :¼ sup
z2K

j f ðzÞj:

The classical Markov inequality for K ¼ ½�1; 1� states that

jjP0
njj½�1;1�4n2jjPnjj½�1;1�; ð2:1Þ

where Pn is a polynomial of degree at most n (cf. [1, Sect. 5.1; 19]). We have
equality in (2.1) for the Chebyshev polynomial TnðxÞ ¼ cosðn arccos xÞ: On
the other hand, Bernstein’s inequality for the unit disk D gives

jjP0
njjD4njjPnjjD: ð2:2Þ

Obviously, equality holds in (2.2) for PnðzÞ ¼ zn: Szeg +oo [23] was apparently
the first to explain the nature of difference in the exponents of n in (2.1) and
(2.2), using the geometry of sets ½�1; 1� and D in the complex plane. He
proved that

jjP0
njjK4CðKÞnajjPnjjK ; ð2:3Þ

where ap is the largest angle at @O; 14a42; and CðKÞ is independent of
n 2 N: The exponent a is sharp, as shown by Szeg +oo with the help of Faber
polynomials. This also follows from Theorems 1.1 and 2.1, for k ¼ 1; which
in addition give a lower bound for the constant CðKÞ: Similarly,
asymptotics (1.9) can be used to show the sharpness of inequalities for the
derivatives of higher order k52:

A universal Markov-type inequality, for an arbitrary continuum K of
capacity capðKÞ; was obtained by Pommerenke [12]:

jjP0
njjK4

en2

2 capðKÞ jjPnjjK : ð2:4Þ

Erd +oos conjectured that e could be replaced by 1 in (2.4) so that (2.1) would
follow from this general result, as capð½�1; 1�Þ ¼ 1

2
: After Rassias et al. [18]
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had noticed that his conjecture needed adjustment, Erd +oos restated it in the
corrected form

jjP0
njjK4

ð1 þ oð1ÞÞn2

2 capðKÞ jjPnjjK ð2:5Þ

as n ! 1 (see, e.g., [5]).
Note that if the angle at z0 is 2p; in the setting of Theorem 1.1, then we

have

jF 0
nðz0Þj ¼

1 þ oð1Þ
ja2j

n2 as n ! 1: ð2:6Þ

It is also known that

jjFnjjK42; n 2 N; ð2:7Þ

for convex K (cf. [14]), so that we can estimate in this case

jjF 0
njjK

jjFnjjK
5

jF 0
nðz0Þj
2

¼ 1 þ oð1Þ
2ja2j

n2 as n ! 1 : ð2:8Þ

Thus, one might try to disprove (2.5) by finding an appropriate set K ; such
that ja2j5capðKÞ: However, we verified for a number of special cases that

ja2j5capðKÞ: ð2:9Þ

In particular, we have a2 ¼ 1=2 ¼ capð½�1; 1�Þ for K ¼ ½�1; 1�: After the
initial version of this paper had been submitted for publication, K .uuhnau [9]
found an elegant proof of (2.9), which is based on a distortion theorem of
L .oowner [11]. Hence, (2.8) and (2.9) show that inequality (2.5) is sharp for
any sets with outward pointing cusps.

We remark that the convexity of K is not essential in the above argument,
because (2.7) can be replaced by the following.

Theorem 2.1. If @O is a piecewise smooth Jordan curve formed by a finite

number of Dini-smooth arcs, then

lim sup
n!1

jjFnjjK42: ð2:10Þ

A Dini-smooth arc is a Jordan arc with a natural parametrization zðsÞ;
such that z0ðsÞ is Dini-continuous, and z0ðsÞa0 for any s 2 ½0; l� (see, e.g.,
[15]). Note that the bound 2 in (2.10) cannot be decreased, which is
immediate from (1.6) (or from (1.9) with k ¼ 0).
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3. PROOFS

Proof of Proposition 1.1. Let Or be a domain such that FðOrÞ ¼ fw : jw
j > rg; r > 0: There exists r0 2 ð0; 1Þ such that F has a conformal extension
into Or0

: Hence (1.3) is valid for any z 2 Or0
; and EnðzÞ is analytic in Or0

:
Denote the level curve of F by gr :¼ fz: jFðzÞj ¼ rg; r > r0: Using Cauchy
integral formula, we obtain from (1.3) that

EnðzÞ ¼
1

2pi

Z
gr

FnðtÞ dt

t � z
; z 2 Or; r > r0;

where integration is carried in clockwise direction. It follows by differentia-
tion of (1.3) that

F ðkÞ
n ðzÞ ¼ dk

dzk
ðFnðzÞÞ þ k!

2pi

Z
gr

FnðtÞ dt

ðt � zÞkþ1
; z 2 Or; k ¼ 0; 1; 2; . . . : ð3:1Þ

We can estimate the remainder term for z 2 Or0 ; r > r051;

k!

2pi

Z
gr

FnðtÞ dt

ðt � zÞkþ1












4k!

2p
lðgrÞrn

ðdistðgr; gr0 ÞÞkþ1
; ð3:2Þ

where lðgrÞ is the length of gr and

distðgr; gr0 Þ :¼ minfjt � zj : t 2 gr; z 2 gr0 g:

Thus (1.5) is a consequence of (3.1) and (3.2). ]

Proof of Theorem 1.1. Using Cauchy formula in (1.3), for a contour
gr :¼ fz : jFðzÞj ¼ r > 1g and a point z 2 O inside gr; we have that

FnðzÞ ¼
1

2pi

Z
gr

FnðtÞ dt

t � z
: ð3:3Þ

This well-known integral representation of Faber polynomials is valid for
any z 2 K by analytic continuation (cf. [21]). Thus, we obtain from (3.3) that

F ðkÞ
n ðzÞ ¼ k!

2pi

Z
gr

FnðtÞ dt

ðt � zÞkþ1
¼ k!

2pi

Z
jwj¼r

wnC0ðwÞdw

ðCðwÞ � zÞkþ1
; ð3:4Þ

where z 2 K and k ¼ 0; 1; 2; . . . : Since @O is rectifiable, jC0ðwÞj is integrable
over jwj ¼ 1: Therefore (3.4) gives that

F ðkÞ
n ðz0Þ ¼

k!

2pi

Z
g

wnC0ðwÞdw

ðCðwÞ �Cðw0ÞÞkþ1
; z0 ¼ Cðw0Þ; ð3:5Þ
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where g is the contour consisting of the arc g0 :¼ fw : jw � w0j ¼ s; jwj > 1g
and the arc g00 :¼ fw : jw � w0j5s; jwj ¼ 1g; for a small but fixed s > 0:
Using expansion (1.7)–(1.8), we have that (see [10, 15; Sect. 3.4])

CðwÞ �Cðw0Þ ¼ aaðw � w0Þa þ gðw � w0Þ

and

C0ðwÞ ¼ aaaðw � w0Þa�1 þ g0ðw � w0Þ;

for w in a neighborhood of w0; jwj > 1: The expansion for g starts as follows:

gðw � w0Þ ¼

bðw � w0Þ2a þ 
 
 
 ; a51;

bðw � w0Þ2 logðw � w0Þ þ 
 
 
 ; a ¼ 1;

bðw � w0Þ1þa þ 
 
 
 ; a > 1:

8>>><
>>>:

Hence

C0ðwÞ
ðCðwÞ �Cðw0ÞÞkþ1

¼ a

ak
aðw � w0Þakþ1

þ O
1

ðw � w0Þp

� �

¼ a

ak
awakþ1ð1 � w0=wÞakþ1

þ O
1

ðw � w0Þp

� �

¼ a

ak
awakþ1

0

1

ð1 � w0=wÞakþ1
þ O

1

ðw � w0Þp

� �
; ð3:6Þ

where p5ak þ 1: It follows that

k!

2pi

Z
g

wnC0ðwÞ dw

ðCðwÞ �Cðw0ÞÞkþ1
¼ k!

2pi

Z
g0
þ
Z
g00

� �
wnC0ðwÞ dw

ðCðwÞ �Cðw0ÞÞkþ1
; ð3:7Þ

where the integral over g00 is bounded for all n 2 N; as s4jw � w0j42 and
jwj ¼ 1: Since 1=ð1 � w0=wÞakþ1 is analytic in %CC=½0;w0�; we have that

1

2pi

Z
g0

wn dw

ð1 � w0=wÞakþ1
� 1

2pi

Z
jwj¼r

wn dw

ð1 � w0=wÞakþ1












4CðsÞ; ð3:8Þ

where CðsÞ is independent of n 2 N: Using the formula for the ðn þ 1Þth
coefficient of the Laurent expansion for 1=ð1 � w0=wÞakþ1 about w ¼ 1; we
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obtain that

1

2pi

Z
jwj¼r

wndw

ð1 � w0=wÞakþ1
¼

ak þ n þ 1

n þ 1

 !
wnþ1

0

� nak

Gðak þ 1Þ wnþ1
0 as n ! 1: ð3:9Þ

The same argument shows that

1

2pi

Z
jwj¼r

wndw

ð1 � w0=wÞp ¼ Oðnp�1Þ ¼ oðnakÞ as n ! 1:

Thus, we obtain from (3.6) to (3.9) that

F ðkÞ
n ðz0Þ ¼

ak!nakwn
0

ðaawa
0Þ

kGðak þ 1Þ
þ oðnakÞ as n ! 1;

where k ¼ 0; 1; 2; . . . : One can deduce more precise information about the
error term, by applying similar analysis to the remaining terms of the
asymptotic expansion (3.6) ]

Proof of Theorem 2.1. Observe that C extends to a homeomorphism
between fw : jwj ¼ 1g and @O (see [15, Theorem 2.1]). Consider the function

vðt; yÞ :¼ argðCðeitÞ �CðeiyÞÞ; tay: ð3:10Þ

Note that vðt; yÞ has a jump discontinuity as a function of t; at t ¼ y; where
y 2 ½0; 2pÞ is fixed. The magnitude of this jump, arising when t passes
through y; is equal to the angle formed by @O at CðeiyÞ; as measured in O:
Clearly, vðt; yÞ can be defined continuously for tay: It was proved in [7,
Theorem 4] that vðt; yÞ is of bounded variation as a function of t 2 ½0; 2pÞ:
Hence, we have the following integral representation for Faber polynomials:

FnðCðeiyÞÞ ¼ 1

p

Z 2p

0

eintdtvðt; yÞ; 04y52p; ð3:11Þ

which is due to Pommerenke (cf. [7, 13, 14]).
Let d > 0 be small. Since @O is rectifiable, we have that C0ðeitÞ 2

L1ð½0; 2pÞÞ; see [15, Theorem 6.8]. Thus (3.10) gives that

Z yþ2p�d

yþd
eintdtvðt; yÞ ¼

Z yþ2p�d

yþd
eintR

eitC0ðeitÞ
CðeitÞ �CðeiyÞ

� �
dt: ð3:12Þ
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The regular modulus of continuity for a 2p-periodic continuous function f is
given by

o1ð f ; uÞ :¼ sup
jx�yj4u

j f ðyÞ � f ðxÞj:

We also define the L1 modulus of continuity for a 2p-periodic function
f 2 L1ð½0; 2pÞÞ by

o1ð f ; uÞ :¼ sup
jhj4u

Z 2p

0

j f ðx þ hÞ � f ðxÞj dx:

The corresponding L1 modulus of continuity on ½yþ d; yþ 2p� d� is
denoted by o1ð f ; u; yÞ: Note that

min
t2½yþd=2;yþ2p�d=2�

jCðeitÞ �CðeiyÞj ¼ cðdÞ > 0:

Hence, we have for u 2 ð0; d=2Þ

o1 R
eitC0ðeitÞ

CðeitÞ �CðeiyÞ

� �
; u; y

� �

4o1
eitC0ðeitÞ

CðeitÞ �CðeiyÞ; u; y
� �

4
o1ðeitC0ðeitÞ; uÞmaxt2½0;2p�jCðeitÞ �CðeiyÞj

ðcðdÞÞ2

þ
o1ðCðeitÞ; uÞ

R 2p
0

jeitC0ðeitÞj dt

ðcðdÞÞ2

4
Ao1ðC0ðeitÞ; uÞ þ o1ðCðeitÞ; uÞ

R 2p
0 jC0ðeitÞjdt

ðcðdÞÞ2
; ð3:13Þ

where A is a positive constant independent of y 2 ½0; 2pÞ and d > 0: It
follows from [3, Sect. 2.3.7] and (3.12) that

Z yþ2p�d

yþd
eintdtvðt; yÞ ! 0 as n ! 1; ð3:14Þ

uniformly in y 2 ½0; 2pÞ; by a version of the Riemann–Lebesgue lemma.
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We show in Lemma 3.1 that for any e > 0 there exists d > 0 such that

Z yþd

y�d
jdtvðt; yÞj42pþ e; y 2 ½0; 2pÞ: ð3:15Þ

Combining (3.14), (3.15) and (3.11), we obtain that

lim sup
n!1

jjFnjjK42 þ e
p
;

which yields (2.10) after letting e ! 0: ]

Lemma 3.1. Suppose that the assumptions of Theorem 2.1 are satisfied.
For any e > 0 there exists d > 0 such that

Z yþd

y�d
jdtvðt; yÞj42pþ e; y 2 ½0; 2pÞ:

Proof. We first note that the above integral expresses the variation of the
angle for the secant line through CðeiyÞ and CðeitÞ; as t runs from y� d to
yþ d: This variation is clearly independent of parametrization for the arc

g :¼ fCðeitÞ : y� d4t4yþ dg:

Also, it is well known that variation is an additive function, so that

Vartðvðt; yÞ; ½y� d; yþ d�Þ ¼Vartðvðt; yÞ; ½y� d; yÞÞ

þ Vartðvðt; yÞ; ðy; yþ d�Þ þ bðyÞ; ð3:16Þ

where bðyÞ is the angle at CðeiyÞ as measured in O: By choosing d > 0
sufficiently small, we can assume that g contains at most one corner point of
@O: If g is smooth, then bðyÞ ¼ p: Furthermore, for any e > 0 there is d > 0;
independent of y; such that

maxðVartðvðt; yÞ; ½y� d; yÞÞ;Vartðvðt; yÞ; ðy; yþ d�ÞÞ4e=2;

by Theorem 5 of [7]. This gives that

Vartðvðt; yÞ; ½y� d; yþ d�Þ4pþ e; ð3:17Þ

uniformly in y:
If CðeiyÞ is a corner point, then we similarly obtain that

Vartðvðt; yÞ; ½y� d; yþ d�Þ4bðyÞ þ e42pþ e: ð3:18Þ
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Consider the remaining case when the corner point is at Cðeit0Þ; t0 2
ðy; yþ dÞ: Following the same argument as for (3.17), we still have that

Vartðvðt; yÞ; ½y� d; t0�Þ4pþ e=2; ð3:19Þ

for all sufficiently small d > 0; which are independent of y: Thus, we need to
estimate Vartðvðt; yÞ; ½t0; yþ d�Þ: Note that the point CðeiyÞ is located outside
the arc

g1 :¼ fCðeitÞ : t04t4yþ dg;

but it can be arbitrarily close to g1: We now consider a more general
variation function

hðzÞ :¼ Varðargðz� zÞ; z 2 g1Þ; z 2 %CC:

Let zj :¼ CðtjÞ; j ¼ 0; . . . ; k; where t05t15 
 
 
5tk ¼ yþ d; be a partition
of g1: Observe that

hkðzÞ :¼
Xk�1

j¼0

jargðzj � zÞ � argðzjþ1 � zÞj

is a continuous subharmonic function on %CC=g1; for any k 2 N: By the
(generalized) maximum principle for subharmonic functions (cf. [17,
Theorems 2.3.1 and 3.6.9]), we have that

hkðzÞ4max
x2g1

hkðxÞ4max
x2g1

hðxÞ; z 2 %CC=g1:

Letting k ! 1; we obtain that

hðzÞ4max
x2g1

hðxÞ; z 2 %CC=g1:

Since x is now positioned on the smooth arc g1; it follows again that

Vartðvðt; yÞ; ½t0; yþ dÞ4max
x2g1

Varðargðz� xÞ; z 2 g1Þ4pþ e=2;

as in (3.17) and (3.19). Combining (3.19) with the above estimate, we have
that

Vartðvðt; yÞ; ½y� d; yþ d�Þ42pþ e

in this remaining case too, so that the lemma is proved. ]



IGOR E. PRITSKER174
ACKNOWLEDGMENTS

The author thanks Professor D. Gaier and the referee for valuable suggestions, and Professor

R. K .uuhnau for communicating his nice proof of (2.9).

REFERENCES

1. P. Borwein and T. Erd!eelyi, ‘‘Polynomials and Polynomial Inequalities,’’ Springer-Verlag,

New York, 1995.

2. J. H. Curtiss, Faber polynomials and the Faber series, Amer. Math. Monthly 78 (1971),

577–596.

3. R. E. Edwards, ‘‘Fourier Series, a Modern Introduction,’’ Vol. 1, Springer-Verlag, New

York, 1979.

4. P. Erd +oos, Problem #564, Colloq. Math. 15 (1966), 320.

5. P. Erd +oos, Some of my favourite unsolved problems, in ‘‘Tribute to Paul Erd +oos’’ (A. Baker,

B. Bollob!aas, and A. Hajnal, Eds.), pp. 467–478, Cambridge Univ. Press, Cambridge, UK,

1990.

6. D. Gaier, ‘‘Lectures on Complex Approximation,’’ Birkh.aauser, Boston, 1987.

7. D. Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 (1999), 265–277.

8. D. Gaier, On the decrease of Faber polynomials in domains with piecewise analytic

boundary, Analysis 21 (2001), 219–229.

9. R. K .uuhnau, personal communication.

10. R. S. Lehman, Development of the mapping function at an analytic corner, Pacific J. Math.

7 (1957), 1437–1449.

11. K. L .oowner, .UUber Extremums.aatze bei der konformen Abbildung des .AAusseren des

Einheitskreises, Math. Z. 3 (1919), 65–77.

12. Ch. Pommerenke, On the derivative of a polynomial, Mich. Math. J. 6 (1959), 373–375.

13. Ch. Pommerenke, Konforme Abbildung und Fekete-Punkte, Math. Z. 89 (1965), 422–438.

14. Ch. Pommerenke, .UUber die Faberschen Polynome schlichter Funktionen, Math. Z. 85

(1964), 197–208.

15. Ch. Pommerenke, ‘‘Boundary Behaviour of Conformal Maps,’’ Springer-Verlag, Berlin,

1992.

16. I. E. Pritsker, On the local asymptotics of Faber polynomials, Proc. Amer. Math. Soc. 127

(1999), 2953–2960.

17. T. Ransford, ‘‘Potential Theory in the Complex Plane,’’ Cambridge Univ. Press,

Cambridge, UK, 1995.

18. G. M. Rassias, J. M. Rassias and Th. M. Rassias, A counter-example to a conjecture of P.

Erd +oos, Proc. Japan Acad. Sci. 53 (1977), 119–121.

19. Q. I. Rahman, G. Schmeisser, ‘‘Les In!eegalit!ees de Markoff et de Bernstein,’’ Presses de

l’Univ. de Montr!eeal, Montr!eeal, 1983.

20. V. I. Smirnov and N. A. Lebedev, ‘‘Functions of a Complex Variable: Constructive

Theory,’’ MIT Press, Cambridge, 1968.

21. P. K. Suetin, ‘‘Series of Faber Polynomials,’’ Gordon and Breach Science Publications,

Amsterdam, 1998.

22. G. Szeg +oo, ‘‘Orthogonal Polynomials,’’ Amer. Math. Soc., Providence, RI, 1975.

23. G. Szeg +oo, Ueber einen Satz von A. Markoff, Math. Z. 23 (1925), 45–61.


	1. FABER POLYNOMIALS AND THEIR DERIVATIVES
	2. MARKOV INEQUALITIES FOR GENERAL SETS
	3.PROOFS
	ACKNOWLEDGMENTS
	REFERENCES

